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Prior to the Industrial Revolution, carbon dioxide (CO2) content in the atmosphere 

was almost constant at about 280 parts per million (ppm). After the Industrial Revolution, 
however, atmospheric CO2 levels increased dramatically. According to National 
Oceanographic and Atmospheric Administration (NOAA), the monthly mean CO2 
concentration peaked at 421 ppm in May 2022. The main possible consequence of the 
increase in CO2 concentration is the enhanced greenhouse effect leading to rising air 
temperature. According to the 2022 report of Intergovernmental Panel on Climate Change 
(IPCC), air temperature will increase by 1.5ºC within the next two decades. Based on the 
assumption that the statistical trend of change obtained from historical data also applies to 
future changes, in this work we created three models based on historical data of CO2 and 
land-ocean temperature, projected their future changes, and investigated the relationship 
between these two variables.  

Based on a trend analysis over the 10-year moving averages of CO2 by a modified 
Mann-Kendall test for autocorrelated data, we confirmed the claim that the CO2 increase 
in 2004 is greater than the averages over any previous 10-year period. Linear, quadratic 
and exponential models were fitted to describe CO2 changes over time. Among them, the 
quadratic model proves to be the most accurate through a 10-fold cross validation for time 
series. None of our models support the claim that the CO2 concentration level will reach 
685 ppm by 2050. The highest CO2 level in 2050 is predicted to be around 497 ppm and 
the quadratic model estimates CO2 concentration level of 685 ppm in 2097.  

As there is obvious increase trend, strong autocorrelation, but without periodicity in 
the land-ocean temperature anomaly time series, we innovatively propose a univariate 
forecasting model combining the seasonal-component-free Holt-Winters method and 
bootstrap-aggregated residuals, which reflects well the fluctuations present in the observed 
temperature time series with a correlation coefficient of 0.971. The projection shows an 
increase in average land-ocean temperature of 1.25, 1.50, and 2°C will occur in 2032 [2027, 
2037], 2042 [2038, 2047], and 2063 [2058, 2067], respectively. 

We used a linear regression model and ARIMA errors to investigate the relationship 
between CO2 and temperature. Given limited data, we assessed the models’ forecast ability 
through multiple ways, including creating various training-testing scenarios. The 
relationship model with CO2 as input shows a more robust performance under any 
scenarios than the univariate model but it underrepresents the fluctuations in long-term 
forecast. Limited evidence shows the models perform better forecasts in the first 10-20 
years. While increased CO2 has been shown to be a major contributor to rising temperature, 
fluctuations of temperature are in fact related to many intervening factors and complex 
interactions within the climate system.  
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Solution for Problem B of HiMCM 2022 

1 Introduction 

 Background 
For most of the time in earth’s history, the carbon dioxide (CO2) concentration in the 

atmosphere changed very slowly and nearly constantly, which is about 280 ppm (parts per 
million) prior to the Industrial Revolution in the 1760s [1]. Most living things, including 
humans, animals, plants, require oxygen (O2) and produce carbon dioxide (CO2) when 
respirating. Most plants carry out photosynthesis under sunlight. In the chloroplasts in their 
leaves, CO2 and H2O turned into O2 and glucose. The rate of production of CO2 and the 
rate of conversion of CO2 into O2 were roughly equal, leading to a relatively equilibrium 
state of concentration level of CO2 in the atmosphere. However, after the Industrial 
Revolution, the atmospheric CO2 level rose dramatically. Three types of fossil fuels, i.e., 
coal, oil and natural gas, support our industry and make our life better. Combustion of all 
sorts of fuels greatly increased as demands of human beings for energy soared [1]. Further, 
the total forest area decreased globally because a great deal of forests had been turned into 
cultivated or urban areas to sustain a rapidly increasing population [2]. Every year, large 
amounts of CO2 are emitted into the atmosphere beyond the converting ability of CO2. 
According to National Oceanographic and Atmospheric Administration (NOAA), the 
monthly mean CO2 concentration level peaked at 421 ppm in May 2022 [3].  

The most prominent consequence of CO2 concentrations is the enhanced greenhouse 
effect. Together with other greenhouse gases, CO2 in the atmosphere traps some of the heat 
that Earth might have otherwise radiated out into space, causing the air temperature to rise. 
According to the report of Intergovernmental Panel on Climate Change (IPCC) in 2022, 
the air temperature rise will reach 1.5ºC within the next two decades [4]. Global warming 
is altering the earth’s climate system, leading to many disastrous consequences, such as 
more frequent and sever weather, higher sea level, more acidic oceans, higher death rates, 
dirtier air, and higher wildlife extinction rates. Only the most drastic cuts in carbon 
emissions from now would help decrease environmental disasters. 

The connections between CO2 and temperature changes are very complex and the 
scientists simulated their responses and feedback through state-of-the-art climate models 
and earth system models. In this contest, we are to create empirical models based on 
historical data of CO2 and land-ocean temperature provided, investigate the relationship 
between these two variables, and predict future changes in CO2 concentration and land-
ocean temperature. The solution to this simplified task will help in understanding climate 
change and its causes. 

 Problem restatement 
First of all, we would like to point out an error in the original problem text. Based on 

the link provided to the source of the CO2 Data Set 1 [5], the values in the CO2 Data Set 
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1 provided represent annual means of Mauna Loa CO2 concentrations, rather than monthly 
means. The value of 377.7 ppm quoted in the text is the annual mean of 2004, not the 
monthly mean of March of 2004, and the correct value for March 2004 is 379.06 ppm. We 
split the problem into the following three questions. 

Question 1: How does CO2 level change over time? Analyze and model the changes 
of CO2 concentrations using the CO2 Data Set 1 provided.  

1a. Is the increase in CO2 in 2004 (relative to pre-industrial levels) greater than the 
record over any previous 10-year period. Provide explanations.  

1b. Fit the changes of concentration levels of CO2 in the atmosphere using various 
mathematical models in different forms.  

1c. Use each of the proposed models to predict the CO2 concentrations in the year 
2100. Determine the CO2 concentration level by 2050 using the models. If the predicted 
level for 2050 is not equal to 685 ppm, determine when the 685 ppm threshold will be 
reached.  

1d. Evaluate the performance of those proposed models and determine which is most 
accurate. Provide a justification. 

Question 2: How is mean ocean-land temperature evolving over time? Analyze and 
model land-ocean temperatures changes using Temps Data Set 2.  

2a. Create a model that reflects historical land-ocean temperatures changes and 
predicts future changes. 

2b. Estimate when the increase of the average land-ocean temperature will reach 
1.25°C, 1.50°C, and 2°C compared to the base period of 1951-1980, which is about 14°C.  

Question 3: What’s the relationship between CO2 concentration and temperature 
change? Model and evaluate the relationship between CO2 concentrations and land-ocean 
temperatures. 

3a. Build a model to analyze the relationship between CO2 concentrations and land-
ocean temperatures since 1959 and explain the possible relationship. 

3b. Evaluate the model’s ability to predict future changes and figure out what factors 
affect this model’s ability.  

2 Problem analysis 

Question 1a: The question is essentially about the trend of CO2 changes over time. 
We can perform a trend analysis over the 10-year running averages of CO2, which can be 
derived from the annual CO2 mean data provided. If the smoothed time series is indicated 
by a trend analysis method to be monotonical increase through 2004, this answer to this 
question is yes. Compared to a threshold approach, where the 2004 level is directly 
compared to any previous levels, this approach has an advantage in solving the problem 
from a statistical point of view. We also note that autocorrelation should be considered 
when performing trend analysis. 

Question 1b-c: CO2 Data Set 1 contains only a time series of annual CO2 
concentration at Mauna Loa. Visual inspection shows changes continue to increase with 
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what appears to be linear trend throughout the time period. However, the data points in the 
low value end and high value end appear to be above the linear trend line, suggesting it is 
not a prefect linear trend. We therefore test quadratic and exponential models in addition 
to the linear fit. The abscissa is unified to the years to the beginning year (1959) to remove 
the potential effect of using the year as the x-value in regression models.  

Question 1d: The CO2 data provided is not very long (only 63 points). We prefer n-
fold cross validation for time series to assess the model performance, in order to maximize 
the benefits of limited data. 

Question 2a-b: A quick look at the annual ocean-land temperature data indicates an 
obvious increase trend throughout the entire period. A common time series model breaks a 
non-stationary time series into trend, periodicity/seasonality and remainder components. 
Trend is obvious, but periodicity for yearly temperatures needs attention. Although some 
materials indicate some periods such as 11 years and 9.3 years in the global temperature 
data [6], they are based on much longer time series. We performed seasonality test and 
spectral analysis, as well as autocorrelation test, on the given temperature data. Based on 
the findings (no obvious periodicity and strong autocorrelation), we propose a novel 
method, which is a combination of Holt-Winters method (exponential smoothing based) 
with no seasonality component and bootstrapping for residuals. The question 2b can be 
answered using this model.  

Question 3a: Given the finding in Question 1b that CO2 changes follow a steadily 
increasing trend, we decompose the temperature time series into a linear trend component 
and the residuals component. Informed by physics, we can deduce that the linear 
component of temperature anomalies can be regressed from the log-transformed CO2 
changes, and the residuals are more related to past temperature anomalies and can be 
estimated by an ARIMA approach.  

Question 3b: We use the historical data to evaluate the model’s ability in predicting 
future temperature changes. The whole historical data is divided into a training set and 
validation set. We create scenarios with different sizes of training set and validate using the 
validation set consisting of the remaining data. By this means, the impacts of training set 
size on the model ability and how the prediction accuracy changes over time into the future 
are quantified. The temperature prediction model developed in question 2 does not depend 
on external variables, while the relationship model in this question additionally includes 
CO2 concentration as an independent external variable. Therefore, we also investigate any 
benefits of using CO2 concentration in the model in terms of predicting future changes. 

3 Assumptions  

Assumption 1: A common disadvantage of empirical/statistical models is that in most 
cases they are applicable only for the conditions the data were collected, thus they are often 
not able to predict beyond this particular condition. In our case, we assume the statistical 
trend of change obtained from historical data applies to future changes. In other words, we 
simulate future changes under a business-as-usual scenario.  
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Justification: Since we don’t know how exactly CO2 levels will change in the future, 
a plausible solution is to simulate different scenarios describing all kinds of possibilities. 
This approach is also taken by IPCC, in whose annual report many scenarios were created 
and simulated. One of the scenarios is a business-as-usual scenario where the current trend 
continues into the end of 21st century. However, we must avoid overfitting during the 
training stage. In addition, we validate model ability against the validation data set, which 
was specifically left out from historical data for validation purposes.  

Assumption 2: The link between temperature and CO2 is very complex. We assume 
a rise in CO2 precedes a rise in temperature in a short period and the trend of change in 
CO2 primarily affects a long-term trend of land-ocean temperature. However, temperature 
fluctuations between years can be caused by many factors and thus expressed as an 
autoregressive process. 

Justification: Considering physics behind the link, changes in temperature are roughly 
proportional to changes in radiative forcing as a function of changing concentration of CO2 
[7]. Strong correlations present between the trends of temperature anomalies and CO2 
levels also support this assumption.  

Assumption 3: The CO2 concentration data provided come from the Mauna Loa site 
and may differ from other CO2 sampling sites. We assume these data have sufficient 
representativeness for the global average condition in our attempts to investigate the 
relationship between CO2 levels and land-ocean temperatures.  

Justification: The team at Mauna Loa has confidence that CO2 measurements made 
at the Mauna Loa Observatory reflect truth about global atmosphere [8]. The site is located 
3400 m high enough to represent very large areas. All measurements are rigorously 
calibrated with a very high accuracy.  

4 Methodology 

 Trend analysis for autocorrelated annual CO2 time series 
(Question 1a) 

In response to Question 1a, we first computed 10-year running averages for the annual 
CO2 data sequence. We evaluated the exceedance of the considered threshold of CO2 level 
in 2004.  

Then, a modified Mann-Kendall (M-K) trend test [9] was conducted for monotonicity 
on the annual CO2 level data sequence. M-K test is a commonly used non-parametric trend 
analysis method based on rank correlation, but its null hypotheses is that the data are 
independent and randomly ordered so the effect of autocorrelation in the CO2 level data 
provided should be considered. The modified method is based on the modified variance of 
the data and shows robust in the presence of autocorrelation in the data. In absence of 
correlation in the data, the power of the modified M-K trend test is also comparable to that 
of the original M-K test. 

The M-K test computes the statistic S for observations X with a dimension of n in Eq. 
(1) where sgn() is a sign function: 
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𝑆𝑆 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖<𝑖𝑖 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖)𝑖𝑖<𝑖𝑖  (1) 

where 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖� = �
1,       𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑖𝑖
0,       𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖

−1,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒
 (2) 

For a large n, the statistic S tends to normality with a mean of 0, and a variance given 
by:  

var(𝑆𝑆) = 𝑠𝑠(𝑠𝑠 − 1)(2𝑠𝑠 + 5)/18 (3) 

In the case of autocorrelation between the values of X, the mean is still zero while the 
variance can be computed by:  

 var(𝑆𝑆) = 𝐸𝐸(𝑆𝑆2) = ∑ 𝐸𝐸(𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑘𝑘𝑘𝑘)𝑖𝑖<𝑖𝑖𝑘𝑘<𝑙𝑙 = ∑ 2
𝜋𝜋

sin−1(𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘)𝑖𝑖<𝑖𝑖𝑘𝑘<𝑙𝑙  (4) 

where 

𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 = 𝑐𝑐𝑜𝑜𝑒𝑒𝑒𝑒(𝑌𝑌,𝑍𝑍) = 𝜌𝜌(𝑖𝑖−𝑘𝑘)−𝜌𝜌(𝑖𝑖−𝑘𝑘)−𝜌𝜌(𝑖𝑖−𝑘𝑘)+𝜌𝜌(𝑖𝑖−𝑘𝑘)
2�[1−𝜌𝜌(𝑖𝑖−𝑖𝑖)][1−𝜌𝜌(𝑘𝑘−𝑘𝑘)]

 (5) 

and 𝑌𝑌 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 and 𝑍𝑍 = 𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘. i, j, l, k indicates the element index in X. ρ denotes a 
correlation function. 

M-K Z statistic is used to transform S to a normally distribution, as computed by: 

𝑍𝑍MK =

⎩
⎪
⎨

⎪
⎧

𝑆𝑆−1
�VAR(S)

(𝑆𝑆 > 0)

0     (𝑆𝑆 = 0)
𝑆𝑆+1

�VAR(𝑆𝑆)
(𝑆𝑆 < 0)

 (6) 

For an upward monotonic trend, the null hypothesis is rejected if |𝑍𝑍𝑚𝑚𝑘𝑘| ≥ 𝑍𝑍1−𝛼𝛼/2 
where α is confidence level. For more details about the modified M-K method and its 
derivation, refer to the literature [9]. We applied the modified M-K trend test to the annual 
CO2 level data by using R package modifiedmk.  

 Models for predicting CO2 concentrations (Question 1b-d) 
Mathematical models are required to fit annual CO2 concentrations. We observed good 

increasing monotonicity, but with data points above the linear trend line in the low end and 
high end. Therefore, we fit linear, quadratic and exponential forms (Equations 7-9) of 
models to this time series, and compared their performances.  

Linear form: 𝑐𝑐𝑐𝑐 = 𝑎𝑎 × 𝑦𝑦 + 𝑏𝑏 (7) 
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Quadratic form: 𝑐𝑐𝑐𝑐 = 𝑎𝑎 × 𝑦𝑦2 + 𝑏𝑏 × 𝑦𝑦 + 𝑐𝑐 (8) 
Exponential form: 𝑐𝑐𝑐𝑐 = 𝑎𝑎 × 𝑒𝑒𝑏𝑏×𝑦𝑦 (9) 

where cc denotes CO2 concentration [ppm], y represents the number of years to the 
beginning year 1959. Coefficients a, b, and c were optimized by using observation data.  

To answer Question 1d, we performed n-fold cross validation for time series to 
evaluate the models’ skill in view of very limited data samples in the CO2 dataset. There 
is a temporal dependency between observations in a time series, the traditional n-fold 
cross validation must be modified to preserve that dependency during test. The procedure 
consists of the following steps.  

First, split the dataset into n equal-size subsets (in this work, n takes 10). Take the 
first subset as a training data set and the second subset as a testing data set. In the next 
iteration, take the first and second subsets as a training set, and the third sunset as a 
testing set, and so on to the end of the training set. In other words, the same forecasted 
subset is then included as part of the next training dataset and subsequent subset is 
forecasted. In this way temporal dependency is respected. At last, we summarize the skill 
of the model using the average of model evaluation scores, which in this work include 
coefficient of determination (R-squared), root mean square error (RMSE) and mean 
absolute error (MAE).  

 Modeling changes of land-ocean temperatures (Question 2) 
The land-ocean temperature anomalies included in Temps Data Set 2 show fluctuation 

but have an increasing trend over time, with an evolving pattern that is much more complex 
than CO2 changes over the same period. We utilize the time series decomposition approach 
to model the changes. A time series can be decomposed to a trend component, a periodicity 
component and a remainder component. For our annual temperature data, we first test for 
the presence of a periodic component using STL (Seasonal and Trend decomposition using 
Loess) method and a spectral analysis.  

The STL has an advantage in that the seasonal component is allowed to change over 
time and provides facilities for additive decompositions [10]. It is implemented in R 
package known as stl() function. The seasonal() function returns the seasonal component. 
Our work indicates no obvious seasonal component present in the annual land-ocean 
temperature anomalies. On the other hand, spectral analysis involves the calculation of 
oscillations in a set of sequenced data by breaking down a signal into its components at 
various frequencies. A previous material [6] based on spectral analysis indicates annual 
global temperatures may exist frequencies of 60 years, 11 years and 9.3 years. Therefore, 
despite the failure of detecting seasonality by STL, we also performed spectral analysis on 
our temperature anomalies (1958-2021) using R function spec.pgram(), which calculates 
the periodogram using a fast Fourier transform. The resulting periodogram shows very 
weak spectrum (c. 0.050 for the largest) present in the data sequence considered. 

Next, we estimated the autocorrelation using R function acf(), which returns strong 
autocorrelation present in the temperature time series. Based on these findings (no obvious 



Team # 12465, Page 9 of 23 

periodicity and strong autocorrelation), we modelled the temperature time series based on 
a decomposition framework with autocorrelation considered. One option is a linear 
regression combined with an ARIMA (autoregressive integrated moving average) model 
for residuals. However, this option relies on ARIMA to represent variability over the entire 
forecast period, and the performance tends to deteriorate in the distant future due to 
ARIMA’s well-known poorer performance for long term forecasts. Bearing this in mind, 
we turn to choose an exponential smoothing approach, which is more explainable than 
ARIMA, to decompose the temperature time series, with the residuals estimated by a 
bootstrap method. Our novel model is based on the Holt-Winters method (exponential 
smoothing based) with no seasonality component [11] and formulated as Equation 10.  

Δ𝑇𝑇′ = ℎ𝑒𝑒(Δ𝑇𝑇) + 𝜖𝜖′ (10) 
𝜖𝜖′ = 𝐸𝐸(𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜𝑒𝑒𝑎𝑎𝑏𝑏(𝐸𝐸(𝜖𝜖), 𝑣𝑣𝑎𝑎𝑒𝑒(𝜖𝜖)) (11) 

where hw() is the Holt-Winters method with no seasonal component applied to temperature 
anomalies series (ΔT ); bootstrap() is a bootstrap function for the remainder series (𝜖𝜖) while 
maintaining expected value (𝐸𝐸(𝜖𝜖) and variance (𝑣𝑣𝑎𝑎𝑒𝑒(𝜖𝜖)) of the remainder component. 
Δ𝑇𝑇′ and 𝜖𝜖′ are the predicted temperature anomalies series and the remainder series.  

The Holt-Winters method has been implemented as an R function HoltWinters() in the 
stats package. It involves a forecast equation and two smoothing equations if no seasonality 
is considered: 

Forecast equation: 𝑦𝑦�𝑡𝑡+ℎ|𝑡𝑡 = ℓ𝑡𝑡 + ℎ𝑏𝑏𝑡𝑡  (12) 
Level equation: ℓ𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + (1 − 𝛼𝛼)(ℓ𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1) (13) 
Trend equation: 𝑏𝑏𝑡𝑡 = 𝛽𝛽(ℓ𝑡𝑡 − ℓ𝑡𝑡−1) + (1 − 𝛽𝛽)𝑏𝑏𝑡𝑡−1 (14) 

where ℓ𝑡𝑡  denotes an estimate of the level of the series at time t, and 𝑏𝑏𝑡𝑡  denotes an 
estimate of the trend of the series at time t. α, 𝛽𝛽 are smoothing parameters for the level 
(0 ≤ 𝛼𝛼 ≤ 1) and the trend (0 ≤ 𝛽𝛽 ≤ 1), respectively.  

Bootstrap is used to simulate the residual component from an estimated distribution of 
the residual component. The basic idea underlying the bootstrap is to estimate the residuals 
by operating a resampling with replacement from the sample at the disposal. To reduce the 
effect of autocorrelation in the residual, we applied moving block bootstrap [12] to our 
work. Besides, bootstrap aggregating (bagging) consisting of 100 runs is used to overcome 
overfitting. The mathematical details and procedures can be found in the literature [12]. In 
this work, we used R function bld.mbb.bootstrap() in the forecast package to implement 
our task.  

Once the model is determined by fitting observed temperature data, it is used for 
predicting the future changes of temperature anomaly. One merit of using this newly 
proposed model is the capability of quantifying uncertainty during the estimation.  
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 Modeling the relationship between CO2 concentration and 
land-ocean temperature (Question 3a) 

The model proposed for solving Question 2 works only for univariate time series, so a 
new model needs to be created to represent the relationship between the two variables: 
CO2 concentration and land-ocean temperature. In physics, the primary effect of increased 
CO2 concentration is to raise the height to which the atmosphere is relatively opaque to 
the infrared radiation from the earth’s surface [7]. Thus, changes in temperature are roughly 
proportional to changes in radiative forcing as a function of changing concentration of CO2. 
A logarithmic function of increased CO2 concentration is suggested to best fit the mean 
temperature anomaly. However, annual temperature anomalies exhibit strong fluctuations 
over time. We speculate CO2 changes may play an important role in affecting the change 
trend of temperature, rather than the detailed fluctuations that are likely resulted from 
numerous exogenous factors and interactions within the climate system. To establish a link 
between CO2 concentrations and land-ocean temperatures, we decomposed the 
temperature time series into a linear trend component and a residual component in the hope 
that the first component would be estimated by the linear increase of CO2 concentrations 
and the residuals by an ARIMA model. This model is known as regression with ARIMA 
errors and can be solved by the R function Arima().  

Suppose that 𝑦𝑦𝑡𝑡  and 𝑥𝑥𝑡𝑡  are time series variables. A linear regression model with 
autoregressive errors can be written as:  

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑡𝑡 (15) 

If an autoregressive model Φ(𝐵𝐵) is defined, and let Φ(𝐵𝐵)𝜖𝜖𝑡𝑡 = 𝜔𝜔𝑡𝑡, then 𝜖𝜖𝑡𝑡 = Φ−1(𝐵𝐵)𝜔𝜔𝑡𝑡 
if the inverse operator, Φ−1(𝐵𝐵), exists. Then, the model of regression with ARIMA error 
can be written:  

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + Φ−1(𝐵𝐵)𝜔𝜔𝑡𝑡 (16) 

where 𝜔𝜔𝑡𝑡  is white noise series. In this work, 𝑥𝑥𝑡𝑡  represents log-transformed increased 
CO2 concentration at time t.  

 Evaluating robustness of CO2 prediction models (Question 3b) 
We have established a univariate model combining the seasonal-component-free Holt-

Winters method and bootstrap (HW+Bootstrap) and a bivariate model of linear regression 
with ARIMA errors (Trend+ARIMA) for predicting future CO2 level changes. To answer 
Question 3b, we assessed the models’ forecast ability from two aspects and figured out 
what factors may affect the ability.  

1) Quantify the model ability based on scenarios configured with different training 
dataset and test set created from historical data, as listed in Table 1.  

By comparing S1, S3 and S5, we can investigate changes of the performance of 
HW+Bootstrap univariate model as the forecast moves forward. Likewise, comparison 
among S2, S4 and S6 helps investigate that of Trend+ARIMA model.  
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Alternatively, comparing S1 and S2, S3 and S4, and S5 and S6, allows us to look into 
the performance distinction between the two models with the same configuration of 
training and test datasets.  

Model performance is measured by correlation coefficient (R) and RMSE.  
2) Comparing the forecast ability of the models for 2021-2100. Since no true data are 

present for 2021-2100, we examined predicted temperature changes estimated from both 
HW+Bootstrap and Trend+ARIMA models in terms of projected trend, evolution pattern 
over time and uncertainty propagation as time progresses.  
Table 1 Scenarios for evaluating models’ forecasting ability. ‘HW+Bootstrap’ represents 
the method combining the seasonal-component-free Holt-Winters method and 
bootstrapped residuals and ‘Trend+ARIMA’ represents the method combining the linear 
regression and ARIMA errors. 
# of scenario Training set Testing set Method 
S1 1959-1979 1980-2000 HW+Bootstrap 
S2 1959-1979 1980-2000 Trend+ARIMA 
S3 1959-1979 2001-2021 HW+Bootstrap 
S4 1959-1979 2001-2021 Trend+ARIMA 
S5 1980-2000 2001-2021 HW+Bootstrap 
S6 1980-2000 2001-2021 Trend+ARIMA 

5 Results and analyses 
 Trends in historical CO2 concentrations 

Figure 1 shows decadal running averages of CO2 concentrations during 1959-2021 in 
a steadily increasing trend that starts from about 320 ppm in the 1960s to ca. 405 ppm in 
the 2010s. The CO2 concentration level in 2004 is 377.7 ppm, which intersects the running 
averages curve at almost 2008 (which indicates an average of the interval 1999 to 2008), 
and it seems to be higher than CO2 concentrations in any previous 10-years averages. The 
highest decadal average CO2 concentration before 2004 was at 367.24 ppm occurring in 
the period of 1994 to 2003. 

 
Figure 1 Decadal running averages of CO2 concentrations. The abscissa (Year*) indicates 
the last year of each 10-year window. 
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Since the running averages are highly autocorrelated, a modified M-K trend developed 
specially for autocorrelated time series [9] was applied to test monotonicity in the data 
sequence. The test showed a p-value close to zero and a z-score of 11.577, much greater 
than the threshold of 2.807 at 99% significant level, indicating a statistically significant 
monotonic increasing trend present in the time series. It thus confirms the claim in Question 
1a that the increase in CO2 in 2004 (relative to pre-industrial levels) is greater than the 
record over any previous 10-year period. 

 CO2 concentration forecast models and predictions 
Based on the historical data provided, we fitted three models, i.e., linear, quadratic, 

and exponential models (Equations 17-18, respectively) for CO2 concentration changes 
over time: 

Linear form: 𝑐𝑐𝑐𝑐 = 1.614 𝑦𝑦 + 307.303 (17) 
Quadratic form: 𝑐𝑐𝑐𝑐 = 0.013 𝑦𝑦2 + 0.806 𝑦𝑦 + 315.522 (18) 
Exponential form: 𝑐𝑐𝑐𝑐 = 309.839 𝑒𝑒0.00449 𝑦𝑦 (19) 

where cc denotes CO2 concentration in ppm and y denotes the years to 1959. Figure 2 
shows the fitted models together with the historical CO2 level data. The fits are all 
statistically significant with p-values lower than 0.001. All three models well capture the 
increasing trend in CO2 concentration with very high R-square values. Among them, the 
quadratic model (Figure 2b) performs the best with an R-square of 0.999, showing perfect 
agreement with the observations. Both the linear (Figure 2a) and exponential (Figure 2c) 
models show some defects at the lower and upper ends of the x axis, where the fit values 
deviate downward from the observations. 

  
Figure 2. Three fitted models for CO2 changes over time. (a) linear model, (b) quadratic 
model, and (c) exponential model.  
 

We verified the performance of the models by performing a 10-fold cross validation 
for time series (Table 2). The overall high R-square values (>0.98) indicate that these 
models agree pretty well with the observations. However, the quadratic equation has tiny 
MAE and RMSE values (<0.08 ppm), which are much smaller than the values of the linear 
and exponential models. Therefore, the quadratic model (Equation 18) proves to be the 
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most accurate model, in prefect agreement with the available observations. 
Based on the fitted models, CO2 concentrations are projected to increase steadily in 

the future, hitting the levels of 535, 688, and 584 ppm, respectively, by 2100. However, 
compared to the Organization for Economic Co-Operations and Development (OECD) 
report, which predicts a CO2 concentration level of 685 ppm in 2050, our fitted models 
appear to be much more conservative. The highest CO2 concentration in 2050 predicted 
by the quadratic equation is around 497 ppm, well below 685 ppm. The linear and 
exponential models predicted that CO2 levels in 2050 at 454 and 466 ppm, respectively, 
which may somewhat underestimate the acceleration in CO2 concentration changes. Based 
on our fitted models, the years when the CO2 level reaches 685 ppm are much later than 
predicted in the OECD report. The quadratic model estimates CO2 concentration reaching 
685 ppm in 2097, close to the end of this century, while the estimates from the linear and 
exponential models are even later (by 2193 and 2134, respectively). 
 
Table 2. Averaged skill scores of fitted models measured by cross validation for time series 

Equations R-square MAE [ppm] RMSE [ppm] 
Linear 0.983 3.584 4.237 

Quadratic 0.999 0.681 0.777 
Exponential 0.991 2.541 3.078 

 
Table 3. Forecasts of CO2 concentration in 2050 and 2100, and the year predicted to reach 
a CO2 concentration of 685 ppm.  

Equations CO2 in 2100 [ppm] CO2 in 2050 [ppm] Year to reach 685 ppm  
Linear 534.9 454.2 2193 
Quadratic 687.6 496.5 2097 
Exponential 583.6 466.2 2134 

 Forecast of land-ocean temperature changes using Holt-
Winters model and bootstrap residuals model 

The level weight α and trend weight β of the seasonal-component-free Holt-Winters 
method (HW) for land-ocean temperature anomalies were estimated to be 0.283 and 0.173, 
respectively. The results show the fitted temperature anomalies can well represent the 
variability trend of the observations (Figure 3a), while they do not reproduce peaks and 
troughs in the time series. Figure 3b presents the residuals, which appear to conform to a 
normal distribution with a mean close to zero. No seasonality was observed in the residual 
series. We applied a bootstrap aggregation approach (also known as bagging) to reproduce 
the residuals as shown in Figure 4a. The resampled residuals by bagging can explain the 
upward and downward variabilities present in the original residuals. Therefore, when the 
mean residuals from the 100 runs were added to the fitted values of the HW model, the 
additive result was found to reflect well the fluctuations present in the observation time 
series (Figure 4b). The correlation coefficient between the observed time series and the 
HW estimates was 0.947, which increased to 0.971 with the HW+bootstrap model as a 
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result of the addition of the bootstrapped residuals. Similarly, the RMSE value was reduced 
from 0.107 °C to 0.081 °C. 

  
Figure 3. Fits of the seasonal-component-free Holt-Winters method (HW) to the annual 
mean land-ocean temperature anomalies. (a) shows the fitted anomalies and the 
observations; (b) shows the residuals. 

 

  
Figure 4. Fitted temperature anomalies by a seasonal-component-free Holt-Winters 
method (HW) with bootstrapped residuals (HW+bootstrap). (a) Residuals computed by 
removing HW fits from the observations and the residuals reproduced by the bootstrap 
approach. The solid blue line represents the mean value of 100 times bootstrapped 
residuals, while the blue shade represents 10% to 90% quantiles of them. (b) Observed 
temperature anomalies and forecasts by HW and HW+bootstrap. 
 

The HW-bootstrap model was used to project future changes of land-ocean 
temperature anomalies. The results are shown in Figure 5. According to our model, land-
ocean temperature is projected to increase at a rate of about 0.24°C/decade in the future. 
The average land-ocean temperature will change by 1.25°C in 2032, 1.5°C in 2042, and 2°
C in 2063 compared to the base period of 1951-1980. If we take into account the 
uncertainties arising from bootstrapping, an increase in average land-ocean temperature of 
1.25, 1.50, and 2°C will occur successively in the intervals: [2027, 2037], [2038, 2047], 
and [2058, 2067], respectively. 
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Figure 5. Simulations of the proposed HW-bootstrap model for 1958 to 2100. Both 
observed land-ocean temperature anomalies (labelled as Observed) and the model 
estimates (labelled as Fitted) are shown for 1958-2021. Temperature anomalies for 2022-
2100 were projected by HW-bootstrap (labelled as Predicted). Levels of 1.25, 1.50 and 
2.00°C are marked.  

 Relationships between CO2 concentration and land-ocean 
temperature 

The fit of annual land-ocean temperature anomalies and CO2 concentrations yielded 
the equation: 

∆𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −21.835 + 3.776 𝑙𝑙𝑠𝑠(𝑐𝑐𝑐𝑐) (20) 

where ∆𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  denotes the increased temperature anomaly, and cc denotes CO2 

concentration. The R-square is 0.922 and the p-value < 0.001. If we eliminate the constant 
terms in Equation 20 by adding a divisor in the logarithm, the equation is transformed to: 

∆𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 3.776 𝑙𝑙𝑠𝑠 � 𝑐𝑐𝑐𝑐
324.594

� (21) 

where the value 324.594 can be considered as a reference concentration level. Equation 21 
implies a proportional relationship between increased temperature and CO2 concentration 
that has physical basis.  

The fit shown in Figure 6 indicates the logarithm model can well interpret the 
increasing trend in temperature anomaly time series. However, the fluctuations over time 
were missed, so an ARIMA model was used to reproduce the fluctuations. We first 
stationarized the fluctuation time series by first differencing (Figure 7a). Then, we 
determined an ARIMA(6, 1, 0) model because the PACF (Figure 7b) generally cuts off 
after six while the ACF (Figure 7b) varies sinusoidally. After running the ARIMA model, 



Team # 12465, Page 16 of 23 

the autocorrelation values are all within the confidence interval, indicating white noise, 
while the p-value is greater than 0.1, which means that the null hypothesis is rejected, and 
we could regard this residual series as white noise. Figure 8a shows the fluctuations 
estimated by the ARIMA model compared to the observed fluctuations calculated by 
subtracting the trend component from the observed temperature anomalies, demonstrating 
acceptable skill of the model. Figure 8b exhibits the final results of combining ARIMA-
simulated fluctuations with the trend component predicted by CO2 concentrations. 
Comparison of the simulation of the Trend-ARIMA model with the observed tempearutre 
anomalies show good agreement between them, with an R value of 0.965, which is slightly 
better than the value (r = 0.960) measured between the observations and the separate trend 
component. Adding the ARIMA-estimated fluctuations to the trend component also 
resulted in a reduction of RMSE from 0.090 to 0.085. 

 
Figure 6. A proportional relationship between annual land-ocean temperature anomalies 
and log-transformed CO2 concentrations. 
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Figure 7. First-differenced fluctuations in annual temperature anomalies after subtracting 
the long-term trend from the time series. (a) First-differenced fluctuations; (b) 
Autocorrelation Function (ACF) plot; and (c) Partial Autocorrelation Function (PACF). 

  
Figure 8. Fluctuations estimated by an ARIMA model (a) and the estimates of temperature 
anomalies from the linear regression and ARIMA errors model (b). The observed 
fluctuations in (a) were computed by subtracting the linear trend component as a function 
of log-transformed CO2 concentrations from the historical temperature anomalies. The 
observed time series in (b) represents the historical land-ocean temperature anomalies. 
The Trend+ARIMA fitted anomaly time series is the result of adding ARIMA-estimated 
fluctuations to the trend component predicted by CO2 concentration.  

 Robustness of the temperature forecasting models 
Until now, we have created a univariate model of HW+Bootstrap and a bivariate model 

of Trend+ARIMA, both having the capability of projecting future changes in temperature 
anomalies. Trend+ARIMA model relies on the changes of CO2 concentration to estimate 
future trend of temperature anomalies (Equation 21). We obtained future changes of CO2 
concentration through the best-performed quadratic model (Equation 18). By the 
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Trend+ARIMA model, global land-ocean temperature anomalies are projected to 
continuously rise in the future and reach 2.5 °C at the end of this century (Figure 9). 
However, compared to the HW+Bootstrap projection (Figure 5), the fluctuations estimated 
by ARIMA fade away as time advances and only trend component remains. This is one of 
the known weaknesses of ARIMA, which performs poorly for long term forecasts. 
Moreover, Trend+ARIMA shows much broacher uncertainty bands than HW+Bootstrap. 

Based on different scenarios configured with different training datasets and test sets 
created from historical data, we could investigate the performance of HW+Bootstrap and 
Trend+ARIMA models (Table 4) in forecasting. Taking data from 1959 to 1979 as the 
training set, the two models achieved close performances no matter what the testing set is. 
However, to our surprise, both two models performed better when predicting the 
temperature anomalies in the distant period of 2001~2021 (S3 and S4) than that in the near 
period of 1980-2000 (S1 and S2). Therefore, we can hardly infer whether the performance 
of these models will degrade when the forecast period goes on, based on our limited 
evidence.  

The influence of the training set seems to override that of the departure of the testing 
period. When taking data from 1980 to 2000 as the training set, though HW+Bootstrap 
achieved a higher r value than Trend+ARIMA, its RMSE value is much larger (S5), while 
Trend+ARIMA achieved close performance regardless of scenarios (S2, S4, S6). It can be 
partially interpreted that while HW+Bootstrap depends solely on its own history, 
Trend+ARIMA is governed by an exogenous variable of CO2 concentration that can be 
reliably estimated. As a result, Trend+ARIMA shows a more robust performance under any 
train-test scenarios. 

Annual temperature anomalies from 2022 to 2100 projected by the two models are 
shown in Figure 10. The contrast shows that the two trajectories evolve generally at a same 
rate, while the Trend+ARIMA trajectory is 0.1-0.2 °C lower than HW+Bootstrap and has 
less fluctuations due to the poor performance of ARIMA for long-term forecasts. Both 
models tend to perform better forecasts in the first 10-20 years than the period after. 

It is difficult and irresponsible to determine how long into the future our models will 
lose its reliability, given the very limited information available and lack of comprehensive 
model validations. Though both models project a similar increasing trend in temperature, 
the fluctuations are often underrepresented. Trend+ARIMA uses CO2 concentration as an 
input, but CO2 concentration alone is far from sufficient to reproduce all details of the 
future time series of temperature anomaly. The fluctuations, which appear to be random 
and without apparent periodicity, are in fact controlled by many intervening factors and 
complex interactions within the climate system. 
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Figure 9. Simulations of annual land-ocean temperature anomalies in 1958 to 2100 by the 
Trend+ARIMA model with CO2 concentrations as input. CO2 concentrations in 1959-2021 
are observed data while after 2021 they were predicted by the quadratic model (Equation 
18). For temperature anomalies in 1959-2021, both observed data (labelled as observed) 
and the estimates by the Trend+ARIMA model (labelled as fitted) are shown. Temperature 
anomaly time series after 2021 was predicted by the Trend+ARIMA model while the future 
trend was calculated based on future projections of CO2 concentrations.  
 
Table 4. Skill scores of two forecasting models (HW+Bootstrap univariate model and 
Trend+ARIMA bivariate model) under different train-test scenarios created from historical 
data.  

# of scenario Training set Testing set Approach R [°C] RMSE [°C] 
S1 1959-1979 1980-2000 HW+Bootstrap 0.639 0.096 
S2 1959-1979 1980-2000 Trend+ARIMA 0.633 0.097 
S3 1959-1979 2001-2021 HW+Bootstrap 0.834 0.093 
S4 1959-1979 2001-2021 Trend+ARIMA 0.848 0.082 
S5 1980-2000 2001-2021 HW+Bootstrap 0.835 0.234 
S6 1980-2000 2001-2021 Trend+ARIMA 0.793 0.097 
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Figure 10. Projected annual temperature anomalies for the future period 2022 to 2100 by 
the HW+Bootstrap univariate model and the Trend+ARIMA bivariate model.  

6 Strengths and Limitations 

 Strengths 
We innovatively propose a univariate forecasting model (HW+bootstrap) combining 

the seasonal-component-free Holt-Winters model and bootstrap-aggregated residuals for 
forecasting annual land-ocean temperature variability. The results show that the model has 
high forecasting power that well preserves the trend of variability, prevents overfitting, and 
quantifies simulation uncertainties. 

We show multiple ways to assess the reliability of the models based on a very limited 
length of data. We evaluated the models for CO2 changes using n-fold cross validation for 
time series. We ran multiple scenarios based on historical data to evaluate two models for 
temperature prediction, which we believe is one of the innovative points in this work. We 
also compared the performance of both models in simulating future time periods to 
determine the robustness of the models in extending into the future. 

In this work, we follow rigorous modeling procedures, in which the studied data were 
first examined for stationarity, autocorrelation and seasonality, etc., before model building. 
This prevents the models from avoiding the model assumptions and ensures that the models 
have an excellent fit and safe future forecasting ability. 

 Limitations 
All three models created in this work are based on historical data. They may not 

correctly predict the occurrence of turning points in the future. This is also a common 
problem of all the empirical/statistic models. Due to the nature of empirical/statistic models, 
our model can only simulate a business-as-usual CO2 emission scenario. For forecasts 
under other CO2 emission scenarios, physical models should be resorted to. 
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The data sets used in this work are not long enough, which may result in insufficient 
coverage of the patterns of the variables of interest. For example, some previous materials 
indicated the presence of periodicity in a long temperature data set that was more than a 
century long, but such periodicity was not tested in our data for the 1959-2021. This shows 
that consistent data sets are particularly crucial for making consistent forecasts from 
statistical models.  

As noted in this work, our models are good at capturing the trend of change in 
temperature anomaly with a single CO2 input, not the detailed annual variations. Despite 
the better performance of HW+Bootstrap in predicting future changes with a narrower 
uncertainty band, its ability to reproduce annual fluctuations weakens over time. Moreover, 
HW+Bootstrap is likely to underestimate the uncertainty, especially in forecasts for the 
distant future. 

7 Conclusions 

In this work, we built three models based on historical data of CO2 and land-ocean 
temperature anomalies to describe past and future CO2 and temperature changes and to 
investigate the relationship between them. CO2 concentrations have increased steadily 
over the past six decades. Linear, quadratic, and exponential forms of mathematical models 
can well represent the overall trend of CO2 changes. 10-fold cross validation for time series 
showed that the quadratic model had the highest predictive accuracy. It is predicted that 
CO2 concentration will reach 685 ppm by the end of 21st century. 

There is also a clear upward trend in the annual land-ocean temperature anomalies with 
evident fluctuations. The HW method can capture the increasing trend and levels in the 
time series, while a bootstrap approach can estimate the residual. Therefore, the combined 
HW+bootstrap model could provide a projection of future changes of temperature anomaly 
where the temperature will increase by 2°C and 3°C in around 2060 and 2100, respectively. 

A logarithmic relationship between the increased temperature and CO2 concentration 
was found and can be used to account for long-term trends of changes in temperature. 
While the fluctuated signal in the temperature time series can be fitted and predicted by the 
ARIMA model, we thus created a linear regression model and ARIMA errors to investigate 
the relationship between CO2 and temperature. We assessed the model reliability through 
multiple ways. The Trend+ARIMA model shows a more robust performance under any 
scenarios than the HW+bootstrap model. Though both models project a similar increasing 
trend in temperature, the fluctuations are often underrepresented. While increased CO2 has 
been shown to be a major contributor to rising temperature, fluctuations in temperature are 
related to many intervening factors and complex interactions within the climate system and 
hard to be reproduced by both models in long term.  

All questions concerned are answered in this work, and we highlight the development 
of the HW+bootstrap model for forecasting temperature variability and creation of 
scenarios based on historical data to evaluate model performance.  
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8 One-Page Non-Technical Article for Scientific Today 

Act! Drastic temperature rise in response to massive carbon dioxide 
emissions 

 
Carbon dioxide concentrations have increased dramatically over the past 60 years, with 

the trend accelerating. Currently, carbon dioxide concentration has increased by 30% 
compared to 60 years ago. If this trend continues in the future, the carbon dioxide 
concentration will be twice as high at the end of this century as it was 60 years ago.  

Global temperature has also shown a clear upward trend over the past six decades, 
albeit with some fluctuations. If we do nothing, our modeling results indicate that global 
temperature will rise by 2°C in the middle of this century and by 3°C at the end of this 
century, compared to the baseline of the 1950s to the 1980s. This may lead to numerous 
environmental disasters in most regions of the world. 

We have found that there is 
close relationship between 
increased carbon dioxide 
concentration and temperature. 
The increasing carbon dioxide 
concentration may be one of the 
main contributors to the 
temperature rising. 

Global warming is one of the 
biggest threats of the 21st 
century. It is high time that we do something to stop climate change. First and easiest, we 
should raise our voices, talk to our friends and family to inform them of the risks of global 
warming, and get our representatives to make good decisions for our future. In addition, 
we could use renewable energy in our daily lives, reduce the waste of water and food since 
pumping, heating, and treating these stuffs consumes a lot of energy, drive a fuel-efficient 
vehicle to reduce carbon emissions while saving fuel, and so on. We should also protect 
forests, plant more trees and limit CO2 emission from factories. All in all, we must be 
aware of the urgent mission to cut down the carbon footprint. Governments of all countries 
should work together to solve the problem of global climate change. Last but not least, 
humans, animals and plants react to the global temperature rise —scientific studies matter! 
Scientific studies document these responses. In this way, science provides a basis for 
understanding how climate change affects our lives and what we can do to slow or reverse 
the changes. 
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